
Tryptophan (TRP), which plays an important role in immune system regulation, protein synthesis, serotonin (5-HT) and melatonin production, is a potent endogenous free radical scavenger and antioxidant. The aim of this work was to determine the efficacy of TRP in neuro-inflammation induced by systemic administration of lipopolysacharide (LPS, 20mg/kg) which promotes the synthesis of free radical (LPO: MDA and 4-HDA), and pro-inflammatory cytokine Interferon-γ (IFN-γ) in different brain regions (cerebral cortex and hippocampus) of rats. Experiments were performed on adult female, pregnant and lactating rats fed with a diet of TRP content (0.5mg/100g protein), cerebral cortex and hippocampus were evaluated for lipid peroxidation (LPO) products, nitrites, nitrates and plasmatic concentration of IFN-γ. LPO levels in LPS+TRP groups were significantly decreased than that obtained in the LPS group. However, there were no observed differences in plasmatic levels of nitrites and nitrates as well as IFN-γ, neither in the cerebral cortex or hippocampus. The TRP has protective effect in the oxidative damage in a model of endotoxic shock in the breading nurslings induced by the systemic administration of LPS, acting as a scavenger of free radicals. So, it can be proposed as an innocuous protector agent in the endotoxic shock process. Copyright © 2011 Elsevier Masson SAS. All rights reserved.