Numerous clinical studies have reported the association between high circulating levels of lipocalin-2 (LCN2) and metabolic diseases. However, only few studies have addressed sexually dimorphic, either in its circulating concentration or in its expression in other organs. To the best of our knowledge, LCN2 and the 24p3 receptor (24p3R), have not been identified in gonads; therefore, the present study analyzed their mRNA expression profile and cellular localization in gonads collected from fetal rats at 21 days post coitum, as well as from neonatal rats at 0, 2, 4, 6, 12, 20 and 30 postnatal days. Semiquantitative polymerase chain reaction and immunohistochemical assays revealed that the LCN2 mRNA during perinatal and pre-pubertal stages presented a sex-specific expression pattern, being higher in ovaries than in testes collected at these stages. Furthermore, the mRNA levels of the long and short isoforms of the 24p3R (507 and 350 bp, respectively), were lower in female gonads from postnatal day 0 onwards in comparison with the levels observed in males, but before birth, the short isoform of the 24p3R was higher in ovaries than in testes. In addition, in females, the abundance of mRNA of this isoform was drastically diminished at 24 h after birth. Furthermore, this specific expression profile of LCN2 and 24p3R at perinatal and prepubertal stages coincides with events of cellular proliferation and apoptosis within both gonads. Immunohistochemical assays revealed that in ovaries, LCN2 and 24p3R are present in germinal and somatic cells of follicles, while in testes, this adipokine and its receptor are only located in germinal cells. These findings suggest that in murine gonads, LCN2/24p3R signaling may be involved either in cell proliferation or cell death driven by gonadotropin-independent or -dependent mechanisms.