Several epidemiological studies in diabetic patients have demonstrated a protective effect of metformin to the development of several types of cancer. The underlying mechanisms of such phenomenon is related to the effect of metformin on cell proliferation among which, mTOR, AMPK and other targets have been identified. However, little is known about the role that metformin treatment have on other cell types such as keratinocytes and whether exposure to metformin of these cells might have serious repercussions in wound healing delay and in the development of complications in diabetic patients with foot ulcers or in their exacerbation. HaCaT Cells were exposed to various concentrations of metformin and cell viability was evaluated by a Resazurin assay; Proliferation was also evaluated with a colony formation assay and with CFSE dilution assay by flow cytometry. Cell cycle was also evaluated by flow cytometry by PI staining. An animal model of wound healing was used to evaluate the effect of metformin in wound closure. Also, an analysis of patients receiving metformin treatment was performed to determine the effect of metformin treatment on the outcome and wound area. Statistical analysis was performed on SPSS v. 18 and GraphPad software v.5. Metformin treatment significantly reduces cell proliferation; colony formation and alterations of the cell cycle are observed also in the metformin treated cells, particularly in the S phase. There is a significant increase in the area of the wound of the metformin treated animals at different time points (P